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Abstract 
A combined similarity metric for analysis of image quality is 

presented, which allows comparisons of halftone images based on 
their color difference and structure similarity. Color comparison is 
based on the I*color metric [2], which was developed in the context 
of photographic image persistence. Structure similarity SSIM [1], 
initially designed for quality estimation in the context of image and 
video coding, characterizes the achromatic channel and refers to 
average luminance, average gradient and covariance (i.e. 
structure) calculated within a pre-defined neighborhood of each 
pixel. The two images to be compared must be given in terms of 
XYZ. After color opponent processing, they are spatially filtered 
according to the viewing distance with a spatial human visual 
observer model (HVOM), that takes different blurring of 
achromatic and chromatic channels into account (CSF's for 
AC1C2). In contrast to the original SSIM approach, CIELAB L* or 
the A channel of the AC1C2 color space (see [3]) are used for the 
achromatic channel to already account for the non-linearity of 
luminance perception. Several examples of image comparison of 
simulated halftone prints are presented.  

Introduction  
A quantitative similarity comparison of halftone printed 

pictorial images is challenging due to their discrete structure as a 
result of the printing method, due to the changes that printouts 
undergo in different applications (drying, fading etc.) and due to 
viewing circumstances (viewing distance etc.). A manifold of 
comparison methods and combinations of these methods with 
different weighting factors have been proposed for various 
applications over the last decades, spanning from global image 
quality measures [6] to image-wise comparison, most of them 
being based on a pixel-wise or histogram comparison.  

Continuous work of CIE [8, 9] resulted in improved color 
appearance distance metrics for comparably color patches, and the 
most recent one, CIE ∆E2000, is widely used and generally 
accepted as a standard providing satisfactory results for many 
practical needs, like color rendering benchmarks. Detail rendition 
aspects are addressed by spatial extension of CIELAB or more 
sophisticated multi-scale observer models. These methods were 
applied to benchmark image compression algorithms and virtual 
rendering. When it comes to halftone image comparisons, color 
differences are usually computed on the color palette of each 
image [4]. The drawback of CIE ∆E2000 is given by its 
applicability to small changes in color and tone reproduction only. 
In certain applications, however, there is a need of quantifying 
more pronounced color changes, even falsely encoded colors. The 
paper of McCormick-Goodhart et al. [2] offers an interesting and 
more extensive debate on this problem in the context of image 
permanence for photographs. The authors propose a computational 
model for estimating ‘the retained image appearance’ of 

photographs, called I* model. That paper also stresses the 
importance of a metric that directly provides results on specific 
images rather than being tied to a certain test target, like a 
predefined array of color patches. Also, the authors argue that the 
color information in an image (hue and chroma) is supplemental to 
the black-and-white information (lightness and contrast), and they 
therefore design the I* model to analyze hue and chroma 
information separately from lightness and contrast information. 
I*BW accounts for changes in achromatic contrast and luminance 
expressed in L*, while the I*color metric accounts for changes in 
chroma and hue. The result of the two analyses can be combined in 
an overall “figure of merit”, that combines the two with a weight. 

Wang et al. [1] have presented a method for the estimation of 
similarity between images with focus on the achromatic channel, 
the structure similarity metric SSIM: it measures similarity of 
images in terms of luminance, gradient and structure. This method 
is a full-reference quality assessment method, initially designed for 
quality estimation in the context of image and video coding. The 
main advantage of SSIM over I*BW is the introduction of structure 
information and a more flexible use of the pixel neighborhood. 

In this paper we propose a combination of the I*color  
difference metric and the SSIM structure similarity metrics 
(achromatic channel), to which a human visual observer model can 
be added to obtain perceived image difference maps, that together 
depict the most relevant dimensions of image appearance, namely 
color, luminance, contrast and structure. With the individual 
difference maps and similarity scores at hands, still correlation 
with psychophysical scores need to be worked out, either using 
average difference measures or other percentiles to resemble 
“peak-picking” [7]. 

Similarity metrics 

I*color difference model 
The I*color difference metric by McCormick-Goodhart et al. 

[2] aims at full tonal scale evaluation of image differences in the 
context of retained image appearance estimation. The color metric 
is based on the hue and chroma of the image, and a similarity value 
of 1 is obtained when no change has occurred. Changes in chroma 
bring the I* values closer to 0. Negative values indicate falsely 
encoded colors, when also the hue has changed considerably (a hue 
shift of more than 60 degrees). The LCH space is divided in 7 
color sectors, six fundamental ones obtained by dividing the color 
space in 60 degree sectors, and the seventh one covering the so-
called ‘gray sector’, which denotes picture elements with a chroma 
less than or equal to 9.5. The I* color metric at a given pixel is 
defined by the following computation: 
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The term ε compensates for small numerical errors in the 
course of experimental color measurement (typically 0.5), ensuring 
I* equals 1 for identical colors. C*i refers to the “initial” chroma 
(the reference image). ∆a and ∆b are the differences between the 
a* and b* values of the compared pixels. 

Structural Similarity (SSIM) 
In their paper [1], the authors Wang et al. argue that point-

based metrics do not account for the structure (correlation) of the 
signal, whereas a measure of structural information change can 
provide an improved figure of merit for perceived image distortion.  

Structural information in an image is analyzed in terms of 
local luminance, contrast and structure. Local computation takes 
into consideration that luminance and contrast can vary across the 
image. The three similarity dimensions are then combined in an 
overall similarity measure. With x and y representing the input 
signals under comparison, the computation of the luminance l, 
contrast c and structure s similarity measures is based on the 
following formulas: 
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where L is the range of values in the image, K1 is a constant, and 
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The local statistics in terms of µx, σx, σxy are computed within 
a local square window of adjustable size, which moves pixel-by-
pixel over the entire image. At each step the SSIM index is 
computed within such a window and allocated to the central pixel 
of the window in the resulting difference map. The overall SSIM 
index is the average of all the local indices. 

Experimental Results 

Test images 
Test images have been generated by a virtual image chain 

based simulation of Inkjet printing systems (multi-level 
halftoning), currently under development at Agfa-Gevaert [5]. 

For image comparison we present several examples of 
simulated halftone prints for a virtual printing process with the 
following settings: 4 inks (CMYK), one printhead per ink with 180 
nozzles, no shingling, resolution 720 dpi, up to 4 levels per dot, 
where the smallest drop has 4 pl ink. The output of the simulation 
is an over-sampled image in terms of XYZ in which each ink dot is 
represented by a matrix of 9x9 pixels. Therefore, the physical size 
of the simulated print represents 9.22 mm only. The reference 
image marks the ideal printing process, i.e. no deviations from the 
intended settings. The images for comparison were obtained by the 
same print settings as before, except for one modification each. 
The resulting images are shown in Figure 1.  
 

 

 

 
Figure 1. Simulated inkjet printouts. Upper row: the reference image (left) 
and a cropped region of it (right). Middle row: the printout with magenta bleed 
(left) and a cropped region of it. Lower row: Less ink load (left) and the 
printout with nozzle faults. 

Three parameter variations were chosen with respect to the 
reference image, namely the following three cases: 
1. Nozzle Faults: 15% of the nozzles show systematic dot 

displacements in the range of 7 to 28 µm resulting in banding. 
2. Magenta Bleed: (humidity-induced) bleed of Magenta ink, i.e. 

the ink dots get larger, while preserving their initial volume. 
3. Less ink: the concentration of ink is reduced with 25% for all 

inks (equivalent to image fading) 



 

 

Results 
The two images to be compared must be given in terms of 

XYZ. The difference maps obtained by applying the SSIM and the 
I*color metric are presented in Figure 2. Larger differences are 
indicated by darker pixels, whereas white indicates high similarity 
in the image difference maps. The SSIM index and the average 
I*color index for the three comparisons are shown in Table 1. In 
Figure 2 only the combined SSIM image difference map (the 
product of luminance, gradient and covariance) is shown. It should 
also be noted that the authors [1,2] correlated differently the two 
metrics to psychophysical scales. 

SSIM is applied on the L* channel with the following settings 
(for details refer to [1]): the local window is a Gaussian window of 
size 11x11, the values range L is set to 100, and K1 is 0.05. L and 
K1 tune the similarity metrics to fit the characteristics of the input 
signals. This means that the two parameters have different values 
when applied on images represented in different color spaces. 

Case 1: Banding due to nozzle faults. We notice that the 
SSIM map correctly identifies the ‘structural’ source of the 
distortion, by highlighting the ink dots displacement as a result of 
the systematic nozzle faults. The I*color difference map also catches 
the region where the distortions occur, but the banding artifact is to 
a large extend camouflaged by the image content, whereas the 
SSIM map more clearly shows the structural image difference as 
perceived. 

Case 2: Distortions due to bleeding of the magenta ink. The 
two metrics highlight distortions complementary: SSIM identifies 
structural changes due to changes of intensity and dot diameter of 
magenta dots, especially in areas where they are printed isolated. 
In neutral areas that are printed as combination of CMY individual 
dot changes are found less prominent by SSIM. I*color on the other 
hand reports mainly changes in the colored areas, whereas less 
differences are found in the lighter areas. The two maps turn out to 
deliver complementary difference information in this case. 

Case 3: Distortions due to less ink load. In this case both 
metrics provide similar results, basically indicating the darker 
regions as the place where ink fading has stronger effects. 

Irrespective of the different psychophysical scales employed 
in I*color and SSIM, the two methods report different ranking of the 
image distortions for the three cases, which corresponds to the 
different effects that the distortions have on the achromatic and 
color channels of the simulated prints, respectively. 

The individual difference maps of SSIM, namely the 
luminance, contrast and structure difference maps, can also provide 
a clue on the nature of the changes indicated by SSIM. Figure 4 
shows an example of such difference maps, in the test Case 3 (ink 
fading). We notice that the maps indicate that the main changes 
caused in the case of less ink are in luminance (increased 
luminance due to less ink load) and in structure (due to smaller ink 
drops), whereas contrast changes are minimal. 

 
SSIM comparison after HVOM spatial blurring 
Structural comparison of halftone images can be applied on a 

magnified (microscopic) view of the printouts, where the halftone 
structure is distinguishable, or on the spatially blurred version of 
the image that simulates the human perception at a given viewing 
distance, and where the halftone structure is no longer visible. 
Thus, one can choose for a kind of “technical image comparison” 

mode (without HVOM) or for a “perceived image comparison” 
mode, in which HVOM filtering is included in order to focus 
comparison on the perceived structure of the printout. 

The HVOM method employed in our computations is a 
refined version of s-CIELAB [9, 3], with XYZ for each (sub-)pixel 
as input. After color opponent processing, the two input images are 
spatially filtered according to the viewing distance (30 cm) and to 
the linear CSF for achromatic and chromatic channels (different 
CSF's for AC1C2). For SSIM computation only the filtered 
achromatic channel (A) of the compared images was used, where 
the value range setting of L has been set to 50 (instead of 100, the 
setting for the L* channel). 

 

 

 

 
Figure 2. Difference maps wrt the reference image. Left: SSIM maps; Right: 
I* maps. Upper row: Printout with nozzle faults; Middle row: Printout with 
magenta bleed; Lower row: Printout with less ink  

Table1.  Experimental results: SSIM and I*color similarity indices  

Comparison SSIM index Average I*color 

Nozzle faults  
0.952 0.848 

25% less Ink 
0.984 0.775 

Magenta bleed 
0.993 0.866 

 



 

 

The image of the test-case “nozzle faults” is presented in 
Figure 3. Next to it we see the SSIM difference map with respect 
to the HVOM filtered reference image. The overall SSIM index in 
this case is 0.998. As expected, the similarity to the filtered 
reference image is higher than when all details in the halftone 
image where taken into account (Case 1 in the previous section). 

 

 
Figure 3. HVOM filtered image with nozzle faults (left) and the SSIM 
difference map obtained by comparing to the reference image after filtering 

 
Figure 4. SSIM individual difference maps for Case 3 (less ink). Upper row: 
Luminance differences (left), Contrast differences (right); Lower row: Structure 
differences (left) and combined SSIM differences (right). 

Conclusions 
A new combination of image difference metrics for image-

wise comparison of halftone images has been identified, which is 
based on a weighted combination of achromatic differences in 
terms of luminance, gradient and co-variance (structure) and of 
differences in hue and chroma (color). The corresponding metrics 
have been introduced in the context of quality estimation for image 
compression (SSIM) and image permanence (I*color), respectively. 
For determining the weight of each image quality dimension in the 
combined metrics, a correlation with psychophysical scores on 
various images will have to be worked out.  

We assume that structure and detail perception is mostly 
governed by achromatic (brightness and contrast) information, 

whereas color perception within an image is less influenced by the 
neighborhood of pixels. Otherwise, a straightforward extension of 
SSIM to color seems feasible, e.g. the value, gradient and structure 
of color in terms of C and H, with as drawback a considerable  
increase of the image quality dimensions. Alternatively, there 
might only be the need to introduce color structure, in addition to 
I*color, as 5th dimension in order to account for color noise.  

Following the experimental approach of the authors of SSIM 
in [1], one can consider the use of the combined similarity metric 
for halftone images as a print quality prediction tool. This requires 
first a step of psychophysical tests aiming at correlating the scale 
of similarity indices to the quality scale. Quality can then be 
expressed either as function of technical parameters (so correlation 
is done to the technical mode of comparison), or as function of 
human perception (where the metrics are used after applying a 
HVOM filtering on the images). 
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